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Kinematic simulation of turbulent dispersion of triangles
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As three particles are advected by a turbulent flow, they separate from each other and develop nontrivial
geometries, which effectively reflect the structure of the turbulence. We investigate here the geometry, in a
statistical sense, of three Lagrangian particles advected, in two dimensions, by kinematic simulation~KS!. KS
is a Lagrangian model of turbulent diffusion that makes no use of anyd correlation in time at any level. With
this approach, situations with a very large range of inertial scales and varying persistence of spatial flow
structure can be studied. We first demonstrate that the model flow reproduces recent experimental results at low
Reynolds numbers. The statistical properties of the shape distribution at a much higher Reynolds number is
then considered. The numerical results support the existence of nontrivial shape statistics, with a high prob-
ability of having elongated triangles. Even at the highest available inertial range of scales, corresponding to a
ratio between large and small scaleL/h517 000, a perfect self-similar regime is not found. The effects of the
parameters of the synthetic flow, such as the exponent of the spectrum and the effect of the sweeping affect our
results, are also discussed. Special attention is given to the effects of persistence of spatial flow structure.

DOI: 10.1103/PhysRevE.68.026313 PACS number~s!: 47.27.Qb
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I. INTRODUCTION

The transport of scalar fields by turbulent flows is an i
portant process in many physical situations ranging from
dynamics of the atmosphere and the ocean to chemical e
neering. Specific examples of scalars are provided by po
ant density, temperature or humidity fields, and the conc
tration of chemical and biological species@1#.

Issues of transport and mixing in turbulence are direc
related to the properties of fluid trajectories. The problem
thus often addressed using Lagrangian techniques@2–4#.
There is an established formal connection between the st
tics of fluid particle motion and the concentration field of
diffusing scalar@5#. Hence, the important modeling issue
predicting passive scalar transport in turbulence can be
dressed by following the evolution of Lagrangian partic
@2–4#.

The dispersion problem of one or two particles in the flo
has been studied in great detail. In particular, the sem
work of Richardson@6# leads to the prediction that the sep
ration between two particles grows according to^R2&}«t3,
where« is the rate of energy dissipation in the flow. Muc
less work has been devoted to the dispersion of three or m
particles. The remarkable organization of the flow, wh
leads to the formation of very sharp fronts of scalar conc
tration @7–10#, has a nontrivial signature on the three-po
correlation function of the flow@11–13#. This, together with
the well-established relation between the properties of
n-point correlation function and the properties of the evo
tion of n fluid particles advected by the flow, provides th
motivation for studying the problem of dispersion of thr
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particles or more. Despite recent progress both theoretic
@14,20# and experimentally@15–18#, little is known about the
dispersion of three particles or more.

An extra motivation to study dispersion of more than tw
particles comes from recent theoretical attempts to mo
turbulent velocity fluctuations in terms of small sets of L
grangian particles@19,20#.

The evolution of three particles configuration in turbule
flows has been considered numerically in direct numer
simulations~DNS! of three-dimensional~3D! flows, at mod-
erate Reynolds number@21#. Because of the limited range o
inertial scales available in DNS, the numerical studies
unable to answer questions about shape statistics in the
tial range. A phenomenological model, introduced to d
scribe the shape deformation in the inertial range, in h
Reynolds number flows, leads to the prediction of a no
trivial shape distribution@21#. This model provided both the
motivation and the theoretical background to analyze the
perimental results of Ref.@22#. This experiment provided
important insight on the statistics of deformation, althou
the experimental setup also suffered from the limited iner
range.

In this paper, we consider the problem of Lagrangian d
persion of three particles with the help of the kinema
simulation ~KS! method, introduced in Ref.@23#. The KS
provides a Lagrangian model of turbulent diffusion, based
a simplified incompressible velocity field, with a proper e
ergy spectrum and no assumption ofd correlation in time
made at any level. This model reproduces very well the
grangian properties observed in laboratory experiments@24#,
as well as in DNS@25#. The computational simplicity of the
KS allows us to consider very large inertial ranges: a ratio
scales of;104 is easily accessible with moderate compu
resources. The KS thus turns out to be a powerful too
study issues of dispersion in turbulent flows.

The present work is devoted to the study of triangles, i

f
.

©2003 The American Physical Society13-1



o-
it
er
ex
l
ed
igh

pe
a

on
-
b

nt
o
tr

gle
rg

m
e
on
i

o
o

e

t
e
d
d

nt
in
rg
o

, w

n

b
e

nl

of
e
we

r-
pal

the

o-
ree
rary

he

er
e is

of
n
pa-

he
is-

ion
-

n

of
ge
ical

KHAN, PUMIR, AND VASSILICOS PHYSICAL REVIEW E68, 026313 ~2003!
two-dimensional flow, by using KS. The choice of a tw
dimensional flow allows us to make direct comparisons w
the available experimental data at low Reynolds numb
We first demonstrate that KS effectively reproduces the
perimental results of Ref.@22#. However, the experimenta
setup also suffers from the limited inertial range, thus sh
ding no light on the shape distribution in the case of h
Reynolds number flows.

The main aim of this work is to investigate the sha
distribution of triangles advected by a turbulent flow with
large Reynolds number using KS. The prediction of a n
trivial shape distribution@21# was based on a rather phenom
enological model, and thus contains possibly questiona
assumptions. Neither the numerical nor the experime
available results allow us to draw definite conclusions
shape statistics at large Reynolds numbers. We demons
here the existence of a nontrivial shape statistics of trian
advected by KS when the inertial range of scales is la
~with an aspect ratio as high asL/h517 000, whereL andh
are the large and small scale cutoffs of the energy spectru
power-law shape!. Qualitatively, our results show that th
hierarchy of scales present in the flow leads to a n
Gaussian shape distribution for a triangle, in agreement w
the phenomenological prediction of Ref.@21#. This is the
main result of this work. Although the KS study does n
allow us to make definite predictions about the problem
dispersion by a ‘‘real’’ turbulent flow, it is highly suggestiv
that a similar effect should exist in real flows.

In Sec. II, we briefly discuss the parametrization used
characterize the size and shape of the triangles, and w
view the theoretical and experimental results on shape
namics. Technical aspects of the simulation methods are
scribed in Sec. III. The comparison between the experime
results of Ref.@22# and the KS simulations are presented
Sec. IV. Section V contains our results concerning the la
Reynolds number limit. In Sec. VI we discuss the effects
persistence of flow structures on shape dynamics. Last
present our concluding remarks in Sec. VII.

II. PREVIOUS RESULTS ON SHAPE DYNAMICS

In this section, we briefly review the previous work o
shape dynamics@21,22#.

A. Kinematics

The evolution of a cluster of particles is described both
the overall scale and by the shape of the object. In the cas
a set ofn53 particles, located atxi ( i 51,2,3), we define a
set of reduced vectors involving relative separations o
defined by Refs.@11,12#:

r15
~x22x1!

A2
, ~2.1!

r25
~2x32x22x1!

A6
. ~2.2!

The radius of gyration is defined as@11#
02631
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R25(
i 51

2

ri
25

1

3 (
jk

r jk
2 , ~2.3!

wherer i j
2 5uxi2xj u2 are the distances between the vertices

the triangle. The quantityR measures the spatial extent of th
swarm of particles. In order to characterize the shape,
introduce a moment of inertia like tensor@21#

gab5(
i 51

2

r i
ar i

b , ~2.4!

wherer i
a is theath spatial component of the vectorri . For

a triangle in two dimensions, the tensorg has two eigenval-
ues,g1.g2 ~note thatg11g25R2). These eigenvalues cha
acterize the spatial extent of the swarm in the two princi
directions. The ratioI 2 between the smallest eigenvalueg2
andR2,

I 25
g2

R2
, ~2.5!

provides us with a quantitative measure of the shape of
object. An equilateral triangle corresponds toI 251/2. The
smaller theI 2, the more elongated the triangle is. The m
ment of inertia tensor can be used both in two and th
dimensions to characterize a set consisting of an arbit
number of particles.

In the case of a triangle, a full parametrization of t
shape is provided by the quantitiesw andx, defined by

x5
1

2
arctanF2r1•r2

r1
22r2

2G , w52
ur13r2u

R2
. ~2.6!

By taking into account the symmetries of the triangle und
any reparametrization of its vertices, the parameter spac
restricted to 0<w<1 and 0<x<p/6. The variablesw and
I 2 are related by the relation,I 25(1/2)(12A12w2). A
small value ofw corresponds to a nearly collinear set
points. The quantityx is small when the separation betwee
two particles, say 1 and 2, is much smaller than their se
ration with the third one:r 12!r 13,r 23.

We consider in this work the statistical properties of t
shape distribution. To this end, we study the probability d
tribution functions of the various quantitiesR, I 2 , w, andx
characterizing the shape. The Gaussian distribut
PG(r1 ,r2)5Nexp@2(r1

21r2
2)# provides an interesting distri

bution of reference. It can be shown@22# that the distribu-
tions of x and w are uniform~in two dimensions!: PG(x)
56/p andPG(w)51. In particular, the corresponding mea
values are^x&G5p/12, ^w&G51/2, and ^I 2&G5(1/2)(1
2p/4).

B. Monte-Carlo model

In order to study theoretically the distortion of sets
three or four particles by a turbulent flow in the inertial ran
of scales, a stochastic model based on phenomenolog
considerations was proposed in Ref.@21#. At the heart of the
3-2
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model is a simplified scale decomposition of the full turb
lent velocity field, on the scale of the global size of t
triangle measured by the radius of gyrationR @26#. Namely,
the velocity field is written as

v[v,1v'1v. , ~2.7!

wherev, is the contribution due to the small wave numbe
or large scales in the usual Fourier decomposit
(uku<1/2R), v. comes from the large wave numbe
(uku>2/R) or small scales, andv' originates from the scale
of the flow comparable to the global scaleR (2/R
<uku<1/2R). The large scale contribution is uniform ove
the triangular configuration of particles, and is therefore
sumed in Ref.@21# not to distort the set of particles. Thev'

part of the velocity field acts coherently over the scale of
triangles with correlation time of the order of the charact
istic time of turbulence at scaleR, defined by

t~R!5R2/3e21/3. ~2.8!

The small scale componentv. is often assumed to be com
pletely incoherent on the scaleR of the three points and its
correlation time is short compared to the characteristic t
of turbulence at scalet(R). It is modeled in Ref.@21# by a
white noise term.

The action ofv' is approximated by a~coarse-grained!
strain matrix,Mab5]avb , acting on the vectorsri . The rap-
idly fluctuating incoherent componentv. is modeled by a
Gaussian, white in time, random process. This leads to
following stochastic model@21#:

dr i
a

dt
5r i

bMab1ui
a , ~2.9!

dMab

dt
52

Mab

t~R!
1hab , ~2.10!

where the indicesi , j 51,2 for three particles are labels of th
relative vectors, see Eq.~2.2!, anda,b labels of the spatia
components. The velocity fieldsu and thehab term are ran-
dom Gaussian terms,d correlated in time with variances

^hab~ t !hcd~ t8!&5Ch
2d~ t2t8!~dacdbd2 1

2 dabdcd!/t~R!,
~2.11!

^ui
a~ t !uj

b~ t8!&5S Cv

2 D 2

d~ t2t8!d i j dabR
2/t~R!.

~2.12!

The stochastic model has been constructed in such a way
the matrixM is traceless~incompressibility! and correlated
with a time scalet(R). Its amplitude is of the order ofuM u
;R21/3. The dimensionless parameterCv ~respectively,Ch)
controls the importance of the incoherent jitter~respectively
of the coherent term! in the model.

Physically, the termr i
bMab in Eq. ~2.10! stretches and

aligns the set of points. This distorting action is opposed
the action of theu term, which tends to make the shap
distribution Gaussian. The shape distribution resulting fr
02631
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these two effects is nontrivial, and depends continuously
the ratioCv /Ch . A priori, this number is of order 1. In the
limit Cv /Ch→`, the shape distribution becomes Gaussia

The model turns out to reproduce qualitatively seve
important aspects of the experimental results. A deta
analysis of the experimental data, however, pointed out s
eral shortcomings of the stochastic approach@22#. In particu-
lar, it was found that whereas the stochastic model predic
uniform distribution of the variablex, the experimental dis-
tribution of x shows a peak nearx50.

III. KINEMATIC SIMULATIONS

In contrast to the stochastic model described above,
defines explicitly the velocity field that advects the particle
Following Ref. @27#, we define the turbulent velocity field
v(x,t) by summing over a set of Fourier modes,kn :

v~x,t !5 (
n51

Nk

@An3kncos~kn•x1vnt !

1Bn3knsin~kn•x1vnt !#, ~3.1!

whereNk is the number of modes in the simulations,kn are
the wave vectors,An and Bn are the amplitude vectors an
vn is the frequency. The norms of the wave vector are c
sen of the formkn5uknu5k0bn with a parameterb typically
chosen to beb5(L/h)1/(Nk21). The large~integral! scaleL
and the small~Kolmogorov! scaleh of the flow verify L
51/k1 andh51/kNk

(L/h5bNk). The direction of the wave

vector, k̂n5kn/uknu, is uniformly distributed along the uni
circle. Similarly, the directions of the vectorsAn andBn are
randomly distributed, and their amplitudes are chosen so
the energy spectrum is of the formE(k);k2p. The frequen-
cies vn are taken to bevn5lAkn

3E(kn), wherel is a di-
mensionless parameter,a priori of O(1). Thedefinition, Eq.
~3.1!, makes the velocity field explicitly incompressibl
Note that nod correlation in time is used in KS at any leve
and that the parameterl controls the unsteadiness of th
flow.

To investigate the geometry of clusters ofn53 Lagrang-
ian particles, we simply advect numerically Lagrangian p
ticles in the velocity fieldv(x,t) defined by Eq.~3.1!. This is
done by solving a set of ordinary differential equations
the position vectorsx(x0 ,t):

d

dt
X~x0 ,t !5v~x5X,t ! ~3.2!

with the initial conditionX(x0 ,0)5x0. We start with an iso-
tropic object, i.e., with an equilateral triangle, of a given siz
and follow its evolution over time. The quantities charact
izing the deformation of the object, such asI 2 , w, x, are
monitored as a function of time. We then perform ensem
averages over many triangles in different realizations of
velocity field to obtain the relevant particle statistics. We a
checked that our results are not sensitive to the choice
3-3
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KHAN, PUMIR, AND VASSILICOS PHYSICAL REVIEW E68, 026313 ~2003!
distribution and/or number of modesNk used in the simula-
tion, in general agreement with the corresponding tests
Ref. @25#.

We first validate the predictions from KS with the expe
mental results@22#. To this end, we choose the power of th
spectrump55/3, the ratio of inner to outer scales as su
gested by the experiment, and we takel5O(1). We then
extrapolate our results to higher values of the ratio of inne
outer scalesL/h, to study dispersion in a high Reynold
number flow.

We stress that KS is a model of the Eulerian velocity fie
used to advect the particles. The KS velocity field~3.1! has
an interesting spatiotemporal flow structure, which var
with the parameters of the flowp andl @26,27#. Investigat-
ing systematically how the changes in the parametersp and
l affects advection of particles is intrinsically interesting
the context of this study.

IV. VALIDATION OF KS

Before making any predictions with KS regarding mul
particle statistics we first validate the model by compar
with the experimental results Ref.@22#. We are interested
here in reproducingqualitatively the experimental results o
@22#. This does not mean that KS is not able to reprodu
quantitative predictions, at the cost of fitting the parame
l. We are merely interested in the trends of the shape e
lution, that is, in the behaviors of the distributions ofw, x,
etc., as a function of time.

An experimental investigation of the problem of dispe
sion of triangles by a turbulent flow was carried out in tw
dimensions, in the inverse cascade regime@22#. The flow
was confined in a small container, 15315 cm2. Permanent
magnets were placed under the bottom of the cell. The fl
was stirred by running a current through a salted soluti
The energy was injected at the scalel i51.5 cm. The velocity
field was recorded by using standard Particle Image Vel
metry techniques and was then stored on a 64364 grid every
0.04 s. The resulting spatial resolution was good enoug
describe all the relevant scales of the flow. A Kolmogor
k25/3 regime was observed over the limited range of sca
1.5 cm< l<5.5 cm. The time resolution was also amply su
ficient to follow numerically the evolution of particles. Th
evolution of a large number (;23104) of triangles was then
followed numerically. In this section we compare our resu
produced from KS with the experimental results of Ref.@22#
and validate our model in the process.

It was observed~see Figs. 3–5 of Ref.@22#! that the typi-
cal size measured by the radius of gyrationR of the triangles
increased until it reached the largest scale 9 cm of the
perimental setup where it started to fluctuate around
value. The evolution in time of the mean values ofw andx
~see Figs. 4 and 5 of Ref.@22#! showed a rapid decrease
these parameters corresponding to strong shape distortio
the triangles. The smaller the initial separationr 0, the lower
the minimal value of this parameter was observed. The sh
distortion was maximum whenR reached the lower value
AR251.5 cm of the inertial range. The mean values of th
variables tend to an asymptotic value whenR increases
02631
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Specifically, it was found that̂w&asm50.5, ^I 2&asm'0.11,
and^x&asm'0.26. These asymptotic values forw, I 2, andx
correspond to a Gaussian distribution ofr1 and r2, which
implies a uniform distribution forw, I 2, and x with the
Gaussian values ^w&Gau51/2, ^I 2&Gau5(12p/4)/2
50.107, and ^x&Gau5p/1250.262 and a correspondin
Gaussian distribution forR: PGau(R)5(8R3/^R2&2)exp
(22R2/^R2&).

The probability distribution function~PDF! of R and w,
see Fig. 6 of Ref.@22#, can be well approximated by th
Gaussian distribution for large values of timet580 s andt
5100 s, corresponding to the values of the radius of gy
tion larger than the integral scaleL. At later times, the finite
size of the experimental system induces a saturation of
triangle size, so the tails of the distribution ofR could no
longer be correctly fitted byPGau(R) @22#. A very slow re-
laxation of the value of̂x& towards its asymptotic, Gaussia
value was observed. The fact thatx50 is more probable
than x5p/6 implies that triangles with one edge muc
shorter than the two other ones has a large probability. T
effect should ultimately disappear at later time, in the diff
sive regime.

The numerical experiment, consists of generating
flows in two dimensions, with an energy spectrumE(k)
;k25/3, similar to that observed experimentally, charact
ized by a ratioL/h53.67, and with an unsteadiness fact
l50.5. The smallest and the largest time scales of the fl
are defined to beth52p/Akh

3E(kh) and tE5L/u8, respec-
tively, whereu8 is the rms velocity of the flow field. In this
flow, we follow the evolution of three points, initialized a
the vertices of an equilateral triangle of sizer 0. The results
were averaged over;104 configurations.

The results obtained from KS show the same tenden
as that observed in the experiment, as we now demonst
All the figures in this paper have been plotted against dim
sionless quantities.

The behaviors as functions of time of the mean values
^R& ~see Fig. 1!, ^w& ~see Fig. 2! and ^x& ~see Fig. 3!, as
well as the evolution of the PDFs ofR, w andx ~see Fig. 4!
computed from KS are very close to those observed exp
mentally ~see Figs. 3–6 of Ref.@22#!. Contrary to the labo-

FIG. 1. Time evolution of̂ R2& for different values ofr 0.
3-4



tu
on
f

or
a
on

w
a

i
n
n-
a

th
or
bu
ge
is

llest

e-
if-
ac-

g
itial

ate
es.
tri-

s to
help

n of

r-
ally
e a

u-
nt
of
of
le I.
the

the

le
s is

ller

very
e

ion
an

t that
bu-

act
ra-
ble

or
sis-
ar

KINEMATIC SIMULATION OF TURBULENT . . . PHYSICAL REVIEW E 68, 026313 ~2003!
ratory experiment, where the spatial confinement of the se
induced a saturation of the growth of the radius of gyrati
^R2& grows like t at very long times. The distribution o
sizes,R, as well as the distribution ofw andx are Gaussian
in this regime. The relaxation of the peak of probability f
x'0 is faster in the KS than in the experiment. This sm
discrepancy is conceivably due to the large scale limitati
of the flow.

At intermediate time scales, when^R2&1/2 is in the inertial
range, the mean values and the distribution ofw are very
close to those observed in Ref.@22#.

These results demonstrate that KS reproduces very
the main properties of the evolution of three Lagrangian p
ticles. A similar conclusion was reached in Ref.@24# by com-
paring laboratory and KS results in two dimensions, and
Ref. @25# by comparing DNS and KS results in three dime
sions. KS is thus a potentially very useful tool both for fu
damental studies, and for dispersion studies in a more
plied context.

V. PREDICTIONS OF KS IN THE LARGE REYNOLDS
NUMBER LIMIT

The results of the preceding subsection demonstrate
the KS model reproduces quite satisfactorily the laborat
results concerning the evolution of three particles in a tur
lent two-dimensional flow. We now investigate the lar
Reynolds number limit with the help of the KS. This

FIG. 2. Time evolution of̂ w& for different values ofr 0.

FIG. 3. Time evolution of̂ x& for different values ofr 0.
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achieved by increasing the ratio of the largest to the sma
scale,L/h irrespective of initial conditions.

A previous study@24# has shown that the separation b
tween two particles in the inertial regime shows sizable d
ferences compared to the famous Richardson’s scaling,
cording to which the separation grows according to^R2&
}et3 irrespective of initial conditions. Specifically a stron
dependence of two-particle dispersion statistics on the in
separation the particles was found@24#. In the case of three
particles studied here, it is of obvious interest to investig
the statistics of the radius of gyration of the set of particl
Also, the existence of a nontrivial, time-independent dis
bution of shapes, predicted by Ref.@21#, when the separation
between particles is in the inertial range of scales, remain
be tested. We address these questions, in turn, with the
of KS.

We stress that there is no guarantee that the evolutio
three particles is correctly predicted by the KS withp55/3
when the ratioL/h becomes large. In spite of this unce
tainty, the numerical results presented here are intrinsic
interesting since the KS flow shares with real turbulenc
number of important properties.

The evolution of three particles has been followed n
merically, using several KS flows, corresponding to differe
Reynolds numbers, or equivalently, to different values
L/h (L/h51691,3381,16909). Our runs, with the values
the parameters characterizing the flows, are listed in Tab
We note in passing that the Reynolds number Re and
Taylor-based Reynolds number Rel are related toL/h by
Re;(L/h)4/3 and Rel;(L/h)2/3.

The results of these simulations~Fig. 5, corresponding to
L/h51691 and Fig. 6, corresponding toL/h516909) show
some resemblance with the smallL/h case~see Sec. IV!. As
the Reynolds number is increased, the dependence of
variables describing geometry,^I 2&, ^W&, and^x& becomes
weaker, both as a function of the initial size of the triang
and as a function of time. The values of these variable
always significantly different from the Gaussian values.

The PDFs ofR, w, and x at the valueL/h51691 also
show trends that are similar to those observed at sma
values ofL/h ~Fig. 7!. We have not followed particles long
enough to see the Gaussian distribution of shapes at
large values ofL/h; the study has been restricted to th
nontrivial inertial range. In this range of scales, the variat
of the PDF as a function of time is considerably weaker th
observed in Sec. IV, and in this sense, the results sugges
one may be getting close to the self-similar shape distri
tion predicted in Ref.@21#. A visible deformation of the PDF
of R can be observed as a function of time, reflecting the f
that at the later times large excursions in the radius of gy
tion are getting close to the value of the largest availa
scaleL.

Although still finite, the value ofL/h for run 13 is sig-
nificantly larger than it is in any engineering, industrial,
laboratory flow. Even so, our numerical results show per
tent differences with the picture of a simple truly self simil
regime.

In all the reported DNS, in two@29# and in three dimen-
sions @30#, a dependence of the behavior of^R(t)& on the
3-5
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FIG. 4. Time evolution of the PDFs ofR/s (s5A^R2&), w, andx(rad) for r 0 /h51/6 in 2D KS, withL/h53.67, tE /th52.3, and
l50.5. From top to bottom the figures are shown at timest523th , t563th , t5103th , and t5143th , respectively. The light lines
correspond to the Gaussian predictionsP(R)58(R/s)3exp@22(R/s)2#, P(w)51, andP(x)56/p @22#.
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initial separationr 0 has been reported. We observe a simi
behavior in our KS calculation. Figure 8 shows that thet3

Richardson regime is never really reached. Instead, a
tinuous dependence of the variation of^R2&/t3 on the initial
separationr 0 is observed. This effect is clearly seen, even
our largest Reynolds number. This behavior suggests tha
set of three particles always remembers its initial conditi
which represents a departure with respect to the Richard
prediction. Also, at a fixed value of the initial size of th
triangle, a nontrivial power seems to emerge as the Reyn
number increases. A similar behavior was observed for
separation between two particles@24#.

To investigate further this effect, we consider the PDFs
the radius of gyration,R. Figure 9 shows a superposition o
02631
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the PDFs ofR/^R& for three different initial values ofr 0 /h
50.1,1.0,5.0, and at different values of time. The distrib
tion of the large values ofR/^R& are expected to be indepen
dent of time and Fig. 9 does not disprove this expectati
However, the distribution at small values ofR/^R& seems to
vary throughout the entire evolution.

To compare different values ofr 0, we have plotted the
PDFs ofR/^R& corresponding to two different values ofr 0,
but with similar values of̂ R& ~Figs. 10 and 11!. For large
enough times the PDFs ofR/^R& seem to collapse at larg
values ofR/^R& within statistical errors. However, seriou
deviations are observed at small values ofR/^R&. In particu-
lar, the peaks of the PDF at very small values ofR/^R& are
much sharper at smaller values than at larger values ofr 0.
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TABLE I. Different simulation parameters of our runs with kinematic simulation.

No. of L/h No. of r 0 /h l No. of E(k);k2p

Runs Triangles ModesNk p

1 3.67 13104 1/6,2/3,8/3,4 0.5 79 1.67
2 10 13104 0.05,0.5,5 0.5 79 1.67
3 1691 13104 0.5,5,20,64 0.5 79 1.67
4 1691 13104 0.5 1.5 79 1.67
5 1691 13104 0.5 5.0 79 1.67
6 1691 13104 0.5 10.0 79 1.67
7 1691 13104 0.5 0.5 79 1.20
8 1691 13104 0.5 0.5 79 1.33
9 1691 13104 0.5 0.5 79 1.40
10 1691 13104 0.5 0.5 79 1.80
11 3380 53104 5,20,64 0.5 200 1.67
12 11180 13104 5,64 0.5 500 1.67
13 16909 13104 5,20,64 0.5 500 1.67
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These results suggest that the distributions ofR are influ-
enced throughout the entire evolution by the initial valuer 0,
insofar as a significant number of triplets do not really se
rate, and remain at a valueR;r 0. In the case of two par-
ticles this behavior has indeed been observed by Jullienet al.
@18# in the laboratory for low Reynolds number flows and
Fung et al. @27# and Nicolleauet al. @24# in high Reynolds
number KS simulations. In this way, the evolution depen
in an essential way on the value ofr 0.

The evolution of other geometric quantities, such as^w&,
^x&, reflects to some extent the behavior described ab
~see Figs. 5, 6!. Indeed, the lack of exact self-similarity ob
served in the evolution of the radius of gyration,R, shows
that the prediction of a truly time independent shape dis
bution is at best valid at Reynolds numbers impossible
attain. Although this prediction might constitute a good fir
order approximation, which becomes better as the Reyn
number increases, Fig. 6 shows that the mean values ow,
I 2, andx do vary with time, even atL/h516909. In addi-
tion, a systematic variation withr 0 is seen in Figs. 5 and 6
The distributions are observed to remain non-Gaussian
long as^R& remains in the inertial range, and do correspo
to a higher probability of observing elongated objects,
anticipated in the stochastic model proposed in Refs.@19,21#.
In the light of the KS results, the stochastic model correc
predicts the main qualitative feature~the increased probabil
ity of elongated objects!, but it does not incorporate the lac
of self-similarity of multiparticle diffusion observed in KS
As we discuss in the following paragraph, memory effe
relating to this lack of self-similarity are observed in labor
tory experiments@18,22#. They are also observed in KS be
cause, unlike stochastic models, KS incorporates the pe
tence of flow structures. Whether this lack of self-similar
persists in the laboratory and in nature at extremely h
Reynolds numbers remains an open question.

The results obtained so far suggest that the lack of s
similarity in the evolution of the radius of gyration,R, is due
to the fact that particles stay together, at a distance of o
r 0 with a high probability. Even if the radius of gyratio
02631
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grows to a valueR@r 0, it was observed in Ref.@22# that two
particles of the triplet can remain close to each other, wit
large probability. We interpret the lack of a stationary dist
bution of shapes to reflect a similar cause: when one par
of the triplet separates from the two other ones, which
main at a mutual distance;r 0, a very elongated shape i
created. The relaxation of the distribution of shapes towa
a stationary distribution will depend on how the two particl
that are close together eventually separate. Our observa
suggest that, the smaller ther 0, the longer the particles will
stay together, and hence, the longer it will take the trans
to relax. This lack of self-similarity is absent in stochas
models, such as those proposed by Ref.@19#, and is consis-
tent with the view that coherent streamline structures
persistent enough to cause a dependence of turbulent d
sion on initial conditions.

VI. EFFECTS OF PERSISTENCE
OF THE FLOW STRUCTURE

The KS model allows us to modify some of the chara
teristics of the advecting flow, both spatially and tempora
This is achieved by modifying the parametersl andp. The
purpose of this section is to investigate the effect of chang
the spatiotemporal structure of the flow, and in this way,
gain insight into the mechanisms involved in multipartic
dispersion.

We first change the temporal structure of the flow
varying the persistence parameterl ~see Fig. 12!. This con-
trols how fast the streamlines of the flow are jittered in co
parison to the relevant eddy turn over time at the correspo
ing scale. This jittering makes the particles in the flow to
rapidly swept from one streamline to the other. Since in
there is no interaction among modes of the velocity field, t
jittering mimics the sweeping effects that are present in a
flow field. The minima of̂ I 2(t)& and ^w(t)& increase with
increasing unsteadiness parameterl within the inertial range
3-7
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FIG. 5. Time evolution of̂ R(t)&, ^I 2(t)&, ^w(t)&, and ^x(t)&
produced by kinematic simulation~KS! in 2D for L/h51691 and
l50.5 with tE /th582.1.
02631
FIG. 6. Time evolution of̂ R(t)&, ^I 2(t)&, ^w(t)&, and ^x(t)&
produced by KS in 2D forL/h516909 andl50.5 with tE /th

5538.1.
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FIG. 7. Time evolution of the PDFs ofR/s, w, andx(rad) for r 0 /h50.5 in 2D KS, withL/h51691 andl50.5 with tE /th582.1.
From top to bottom the figures are shown at timest5203th , t5603th , andt51003th , respectively.
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of time scales, which means triangles are less elongated
larger values ofl ~Fig. 12!. This happens because the pat
of the neighboring particles decorrelate faster for larger v
ues of l and triangles quickly forget their memory of th
initial state. Hence increased values ofl should cause the
triangle shape parameters to relax faster to their corresp
ing Gaussian values.

Second, we change the spatial structure of the flow fi
by changing the energy spectrum, i.e., changing the expo
p in E(k);k2p ~see Fig. 13!. This has the effect of changin
the density of straining regions in the flow field@27,28#,
thereby modifying the separation mechanism of particle p
and clusters. The minimum of^I 2(t)& and ^w(t)& decreases
with increasingp (E(k);k2p) within the inertial range of
time and scales. This means that the clusters are more~less!
elongated during the inertial range of times whenp is made
larger~smaller!. An explanation of this effect can be given
terms of randomness: asp increases, there is less energy
the smaller scales of the turbulence, which may mean
randomness leading to clusters remaining more elong
during the inertial range of times. In the context of KS, asp
increases, there is indeed less energy in the small scales
ing to smaller unsteadiness frequencyvn;kn

(32p)/2 and
therefore less randomness and more elongated clusters. H
ever, a more searching explanation should invoke the spa
temporal flow mechanism causing cluster elongation. O
such mechanism already proposed in the literature@23,27# is
based on persistent effects of straining regions. The sp
density of straining regions decreases asp is made larger
@27,28#.
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However, the simple calculation, presented in the App
dix, indicates that the average straining rate per strain
region increases faster than the number of such regions
creases whenp is made larger. Provided that the effect
increased strain rate per strain region overwhelms that of
decreased number of such regions, then the same conclu
is reached: clusters should remain more~less! elongated dur-
ing the inertial range of times whenp is made larger
~smaller!.

VII. CONCLUSIONS

We have investigated the Lagrangian shape dynamics
the corresponding statistics of multiple particles, namely,
three particles advected by a two-dimensional turbulent fl
We have used KS to generate a turbulent velocity field a
follow numerically sets of three particles in this flow field
The results of the simulation have been compared with
results of a two-dimensional experiment@22#. We have iden-
tified a mechanism for the shape evolution of three partic
depending on the underlying flow structure and the effec
persistence of these structures on the statistics of th
shapes.

Two regimes with well-characterized distributions ha
been identified in our simulation with KS, as observed in t
experiment of Castiglioneet al. @22#.

The first regime is characterized by the fact that the m
separation between particles is large compared to the lar
scale of the flow~diffusion regime!; the shape distribution is
Gaussian.
3-9
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KHAN, PUMIR, AND VASSILICOS PHYSICAL REVIEW E68, 026313 ~2003!
The main result of this work concerns the other regim
where the mean separation between particles is in the ine
range:h2!^R2&!L2. We have found that in this regime, th
shape distribution is nontrivial, as predicted phenomenolo
cally in Ref. @21#. The temporal evolution of̂ I 2(t)&,
^W(t)&, and ^x(t)& match with the experimental results o
Ref. @22#. KS also reproduces the correct distribution
these quantities. The stochastic model can do as well, ex
for the PDF ofx. In the inertial range of scales, the eviden
for Richardson’s law,̂ R(t)&}t3, remains elusive.

It is found that the clusters are more~less! elongated dur-
ing the inertial range of times whenl is made smaller

FIG. 8. Time evolution of^R(t)2&/(t/th)3 obtained by kine-
matic simulation of a triangular configuration of three particles i
two-dimensional high Reynolds number (L/h51691,3381, and
16909! turbulent flow for different initial separationr 0’s. Here the
energy spectrumE(k);k25/3, l50.5, and the number of realiza
tions is 53103.
02631
,
ial

i-

f
pt

~larger! ~Fig. 12!. The reason for this result must be that t
persistence of the straining action of the flow is diminish
when the flow is made more unsteady by increasingl.

It is also found that the clusters are more~less! elongated
during the inertial range of times whenp is made larger
~smaller!. An explanation of this effect can be given in term
of randomness: asp increases, there is less energy in t
smaller scales of the turbulence, which may mean less
domness leading to clusters remaining more elongated
ing the inertial range of times. However, we also discus
more searching explanation that invokes the straining mec
nisms causing cluster elongation.

The dependence of the shape of clusters on the in
separation between marked fluid elements is clearly dem

FIG. 9. Time evolution of the PDF ofR with different r 0’s
obtained by KS in two dimensions withE(k);k25/3, L/h53381.
From left to rightr 0 /h50.10,1.0 and 5.0.
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KINEMATIC SIMULATION OF TURBULENT . . . PHYSICAL REVIEW E 68, 026313 ~2003!
FIG. 10. PDF of radius of gyration,R, or global size with dif-
ferent values ofr 0. Here bothr 0 and^R& have been normalized b
h. Two runs with different initial sizes are compared. The PDFs
shown at several times, forr 050.1 andr 051.0. For comparison,
the PDFs ofR corresponding tor 050.1 are shown at two times
where the value of̂ R(t)& are the closest to the value of^R(t)&
obtained with the larger value ofr 0. The other parameters of th
runs areL/h53381, l50.5, andtE /th5130.2.
02631
strated by the PDF of the radius of gyration of particle clu
ters with different initial separations not collapsing with
the inertial range~see Figs. 10 and 11!. Our KS numerical
experiments indicate that clusters tend to have memory
the initial state even when the turbulence has an extrem
wide inertial range of more than four decades.

This result is in agreement with the observed depende
@24# on the initial pair separation of the apparent power-l
governing the growth of interparticle distances. If these
fects are transient and due to a finite range of inertial sca
then our results indicate that they might only disappear
extremely high Reynolds numbers. However, the possibi
should also be retained that these effects are not finite ra
transient effects, and are caused, instead, by the persist
of spatial flow structures at all scales, assuming this per
tence remains at asymptotically high Reynolds numbers.

It is not clear how the results of this work apply to th
problem of dispersion by a real velocity field. This stud
however, demonstrates that the scale hierarchy of the fl
leads to nontrivial shape statistics. A non-Gaussian shape
tribution is thus very likely to be found in real flows whe
the inertial range is very large.
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APPENDIX

Assume that we are given the spectrumE(k)
5E0L(kL)2p defined in the range 1/L<k<1/h of an isotro-
pic turbulence. The mean square straining rate^(]u/]x)2& is
proportional to*1/L

1/hk2E(k)dk. Substituting the form of the
spectrum and integrating we get forp,3,

K S ]u

]xD 2L ;
E0

~32p!L2S L

h D 32p

. ~A1!

FIG. 12. Time evolution of̂ I 2(t)& and ^w(t)& obtained by ki-
nematic simulation of a triangular configuration of three particles
a two-dimensional high Reynolds number (L/h51691) turbulent
flow for different l ’s. Here the energy spectrumE(k);k25/3, ini-
tial separationr 050.5h, and number of realizations is 53103.
02631
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In KS, the number density of straining stagnation points
creases with increasingp @27# and Ref.@28# calculated the
following scaling relation:

ns;S L

h D Ds

, ~A2!

wherens is the number density of straining stagnation poin
andDs is the fractal dimension of the spatial distribution
these points in the flow. In 2D KS,Ds532p @28#. Hence,
the number of straining stagnation points per unit area
creases with increasingp in our KS, but the mean squar
strain rate per straining stagnation point, i.e.,^(]u/]x)2&/ns ,
scales likeE0 /(32p)L2. This implies that, although the
number density decreases with increasingp, but the mean
strain rate per straining stagnation point becomes stron
which is the reason behind the decrease of the parame
^I 2& and ^W& with increasingp.

n FIG. 13. Time evolution of̂ I 2(t)& and ^w(t)& obtained by ki-
nematic simulation of a triangular configuration of three particles
a two-dimensional high Reynolds number (L/h51691) turbulent
flow for different energy spectraE(k);k2p. Here l50.5, initial
separationr 050.5h, and number of realizations is 53103.
@1# B.I. Shraiman and E.D. Siggia, Nature~London! 405, 639
~2000!.

@2# P.K. Yeung, Annu. Rev. Fluid Mech.34, 115 ~2002!.
@3# B. Sawford, Annu. Rev. Fluid Mech.33, 289 ~2001!.
@4# S.B. Pope, Annu. Rev. Fluid Mech.26, 23 ~1994!.
@5# G.K. Batchelor, Proc. Cambridge Philos. Soc.48, 345 ~1952!.
@6# L.F. Richardson, Proc. R. Soc. London, Ser. A110, 709~1926!.
@7# C. Gibson, C. Freihe, and S. McConnell, Phys. Fluids20, S156

~1977!.
@8# P.G. Mestayer, J. Fluid Mech.125, 475 ~1982!.
3-12



.

d

.

J.

c.,

KINEMATIC SIMULATION OF TURBULENT . . . PHYSICAL REVIEW E 68, 026313 ~2003!
@9# K.R. Sreenivasan, Proc. R. Soc. London, Ser. A434, 165
~1991!.

@10# L. Mydlarski and Z. Warhaft, J. Fluid Mech.358, 135 ~1998!.
@11# B.I. Shraiman and E.D. Siggia, Phys. Rev. E57, 2965~1998!.
@12# A. Pumir, Phys. Rev. E57, 2914~1998!.
@13# L. Mydlarski, A. Pumir, B.I. Shraiman, E.D. Siggia, and Z

Warhaft, Phys. Rev. Lett.81, 4373~1998!.
@14# G. Falkovich, K. Gawedzki, and M. Vergassola, Rev. Mo

Phys.73, 913 ~2001!.
@15# A. La Porta, G.A. Voth, A.M. Crawford, J. Alexander, and E

Bodenschatz, Nature~London! 409, 1017~2001!.
@16# S. Ott and J. Mann, J. Fluid Mech.422, 207 ~2000!.
@17# N. Mordantet al., Phys. Rev. Lett.87, 214501~2001!.
@18# M.C. Jullien, J. Paret, and P. Tabeling, Phys. Rev. Lett.82,

2872 ~1999!.
@19# M. Chertkov, A. Pumir, and B.I. Shraiman, Phys. Fluids11,
02631
.

2394 ~1999!.
@20# A. Celani and M. Vergassola, Phys. Rev. Lett.86, 424 ~2001!.
@21# A. Pumir, B.I. Shraiman, and M. Chertkov, Phys. Rev. Lett.85,

5324 ~2000!.
@22# P. Castiglione and A. Pumir, Phys. Rev. E64, 056303~2001!.
@23# J.C.H. Fung, J.C.R. Hunt, N.A. Malik, and R.J. Perkins,

Fluid Mech.236, 281 ~1992!.
@24# F. Nicolleau and J.C. Vassilicos, Phys. Rev. Lett.90, 024503

~2003!.
@25# N.A. Malik and J.C. Vassilicos, Phys. Fluids11, 1572~1999!.
@26# B. Shraiman and E. Siggia, C. R. Acad. Sci., Ser. IIb: Me

Phys., Chim., Astron.321, 279 ~1995!.
@27# J.C.H. Fung and J.C. Vassilicos, Phys. Rev. E57, 1677~1998!.
@28# J. Davila and J.C. Vassilicos, e-print physics/0207108.
@29# G. Boffetta and A. Celani, Physica A280, 1 ~2000!.
@30# P.K. Yeung, Phys. Fluids6, 3416~1994!.
3-13


