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Kinematic simulation of turbulent dispersion of triangles
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As three particles are advected by a turbulent flow, they separate from each other and develop nontrivial
geometries, which effectively reflect the structure of the turbulence. We investigate here the geometry, in a
statistical sense, of three Lagrangian particles advected, in two dimensions, by kinematic sinfkiBtid¢S
is a Lagrangian model of turbulent diffusion that makes no use oféacgrrelation in time at any level. With
this approach, situations with a very large range of inertial scales and varying persistence of spatial flow
structure can be studied. We first demonstrate that the model flow reproduces recent experimental results at low
Reynolds numbers. The statistical properties of the shape distribution at a much higher Reynolds number is
then considered. The numerical results support the existence of nontrivial shape statistics, with a high prob-
ability of having elongated triangles. Even at the highest available inertial range of scales, corresponding to a
ratio between large and small scélep=17 000, a perfect self-similar regime is not found. The effects of the
parameters of the synthetic flow, such as the exponent of the spectrum and the effect of the sweeping affect our
results, are also discussed. Special attention is given to the effects of persistence of spatial flow structure.
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[. INTRODUCTION particles or more. Despite recent progress both theoretically
[14,20 and experimentally15-18, little is known about the
The transport of scalar fields by turbulent flows is an im-dispersion of three particles or more.
portant process in many physical situations ranging from the An extra motivation to study dispersion of more than two
dynamics of the atmosphere and the ocean to chemical engparticles comes from recent theoretical attempts to model
neering. Specific examples of scalars are provided by pollutturbulent velocity fluctuations in terms of small sets of La-
ant density, temperature or humidity fields, and the concengrangian particle$19,20.
tration of chemical and biological specigs. The evolution of three particles configuration in turbulent
Issues of transport and mixing in turbulence are directlyflows has been considered numerically in direct numerical
related to the properties of fluid trajectories. The problem isimulations(DNS) of three-dimensional3D) flows, at mod-
thus often addressed using Lagrangian technides. erate Reynolds numbg21]. Because of the limited range of
There is an established formal connection between the statifiertial scales available in DNS, the numerical studies are
tics of fluid particle motion and the concentration field of aunable to answer questions about shape statistics in the iner-
diffusing scalar5]. Hence, the important modeling issue of tial range. A phenomenological model, introduced to de-
predicting passive scalar transport in turbulence can be adcribe the shape deformation in the inertial range, in high
dressed by following the evolution of Lagrangian particlesReynolds number flows, leads to the prediction of a non-
[2-4]. trivial shape distributiori21]. This model provided both the
The dispersion problem of one or two particles in the flowmotivation and the theoretical background to analyze the ex-
has been studied in great detail. In particular, the semingberimental results of Ref.22]. This experiment provided
work of Richardsor}6] leads to the prediction that the sepa- important insight on the statistics of deformation, although
ration between two particles grows according{R?)=et?, the experimental setup also suffered from the limited inertial
wheree is the rate of energy dissipation in the flow. Much range.
less work has been devoted to the dispersion of three or more In this paper, we consider the problem of Lagrangian dis-
particles. The remarkable organization of the flow, whichpersion of three particles with the help of the kinematic
leads to the formation of very sharp fronts of scalar concensimulation (KS) method, introduced in Ref23]. The KS
tration [7—10], has a nontrivial signature on the three-pointprovides a Lagrangian model of turbulent diffusion, based on
correlation function of the floWf11-13. This, together with a simplified incompressible velocity field, with a proper en-
the well-established relation between the properties of thergy spectrum and no assumption &fcorrelation in time
n-point correlation function and the properties of the evolu-made at any level. This model reproduces very well the La-
tion of n fluid particles advected by the flow, provides the grangian properties observed in laboratory experimg2#h
motivation for studying the problem of dispersion of threeas well as in DN25]. The computational simplicity of the
KS allows us to consider very large inertial ranges: a ratio of
scales of~ 10" is easily accessible with moderate computer
*Present address: MCND, Department of Physics, University ofesources. The KS thus turns out to be a powerful tool to
Manchester, Oxford Road, Manchester M13 9PL, United Kingdom study issues of dispersion in turbulent flows.
Email address: amir@reynolds.ph.man.ac.uk The present work is devoted to the study of triangles, in a
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two-dimensional flow, by using KS. The choice of a two- 2 1

dimensional flow allows us to make direct comparisons with R2= 2 pi2=— E rjzk, (2.3
the available experimental data at low Reynolds numbers. =1 3 &

We first demonstrate that KS effectively reproduces the ex-

. . wherer2 =|x; —x;|? are the distances between the vertices of
perimental results of Ref.22]. However, the experimental the triar{ le TheJ uantitiR measures the spatial extent of the
setup also suffers from the limited inertial range, thus shed- gee. q R P

ding no light on the shape distribution in the case of highisalfgrdnacoef ;izgcr:rl]eesrit Igf ?r:g?tiratﬁkghtzrnasglr]lze the shape, we
Reynolds number flows.

The main aim of this work is to investigate the shape 2
distribution of triangles advected by a turbulent flow with a gabzz P?Piby (2.4
large Reynolds number using KS. The prediction of a non- i=1

trivial shape distributiofi21] was based on a rather phenom- a ]
enological model, and thus contains possibly questionablé’h?repi IS theath.spaualll component of the vectpy. For
assumptions. Neither the numerical nor the experimenta® triangle in two dimensions, the tensphas two eigenval-
available results allow us to draw definite conclusions ort€S.d:1>0, (note thatg; +g,=R?). These eigenvalues char-
shape statistics at large Reynolds numbers. We demonstra@éterize the spatial extent of the swarm in the two principal
here the existence of a nontrivial shape statistics of triangledirections. The ratid, between the smallest eigenvalgg
advected by KS when the inertial range of scales is larg@&nd R?,
(with an aspect ratio as high a¢»=17 000, wherd. and »
are the large and small scale cutoffs of the energy spectrum’s _92
power-law shape Qualitatively, our results show that the 2 R2
hierarchy of scales present in the flow leads to a non-
Gaussian shape distribution for a triangle, in agreement witlprovides us with a quantitative measure of the shape of the
the phenomenological prediction of R¢R1]. This is the object. An equilateral triangle correspondsite=1/2. The
main result of this work. Although the KS study does notsmaller thel,, the more elongated the triangle is. The mo-
allow us to make definite predictions about the problem ofment of inertia tensor can be used both in two and three
dispersion by a “real” turbulent flow, it is highly suggestive dimensions to characterize a set consisting of an arbitrary
that a similar effect should exist in real flows. number of particles.

In Sec. I, we briefly discuss the parametrization used to In the case of a triangle, a full parametrization of the
characterize the size and shape of the triangles, and we rghape is provided by the quantitiesand y, defined by
view the theoretical and experimental results on shape dy-
namics. Technical aspects of the simulation methods are de- 1 {2,;1.,;2

(2.9

! ) ! ) |p1X po
scribed in Sec. lll. The comparison between the experimental X= Earcta 2 2|0 W= ZT- (2.6)
results of Ref[22] and the KS simulations are presented in P1— P2

Sec. IV. Section V contains our results concerning the IargeB R : :
g . taking into account the symmetries of the triangle under
Reynolds number limit. In Sec. VI we discuss the effects of 4 g y 9

ist £ 1 fruct h d ics. Last any reparametrization of its vertices, the parameter space is
persistence ot flow structures on shape dynamics. Last, Wesyricted to @sw<1 and O< y=</6. The variablesv and
present our concluding remarks in Sec. VII.

|, are related by the relation,=(1/2)(1—Jy1—-w?). A
small value ofw corresponds to a nearly collinear set of
Il. PREVIOUS RESULTS ON SHAPE DYNAMICS points. The quantity is small when the separation between
two particles, say 1 and 2, is much smaller than their sepa-
ration with the third oner ;,<<rq3,r »3.

We consider in this work the statistical properties of the
shape distribution. To this end, we study the probability dis-
tribution functions of the various quantitiéy I,, w, and y

The evolution of a cluster of particles is described both bycharacterizing the shape. The Gaussian distribution
the overall scale and by the shape of the object. In the case &f;(p, ,p,) = Nexd —(p2+p3)] provides an interesting distri-

a set ofn=3 particles, located at; (i=1,2,3), we define a Dbution of reference. It can be shoW@2] that the distribu-
set of reduced vectors involving relative separations onlytions of y andw are uniform(in two dimensions Pg(x)

In this section, we briefly review the previous work on
shape dynamick21,22.

A. Kinematics

defined by Refs[11,12: =6/ andPg(w)=1. In particular, the corresponding mean
values are{x)g=m/12, (W)g=1/2, and {l,)s=(1/2)(1
_(Xo—Xy) — 4
P 2p ™4

B. Monte-Carlo model
(2X3— X —Xq)

po= ) (2.2) In order to study theoretically the distortion of sets of
\/5 three or four particles by a turbulent flow in the inertial range
of scales, a stochastic model based on phenomenological
The radius of gyration is defined &%1] considerations was proposed in Regf1]. At the heart of the
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model is a simplified scale decomposition of the full turbu-these two effects is nontrivial, and depends continuously on
lent velocity field, on the scale of the global size of thethe ratioC,/C,. A priori, this number is of order 1. In the

triangle measured by the radius of gyratigri26]. Namely, limit C,/C, —o, the shape distribution becomes Gaussian.

the velocity field is written as The model turns out to reproduce qualitatively several
B important aspects of the experimental results. A detailed
v=v tv~.tus, (2.7) analysis of the experimental data, however, pointed out sev-

wherev _ is the contribution due to the small wave numberseral_shortcomlngs of the stochastic approE_ 1. In part|cu-_

X . ... “lar, it was found that whereas the stochastic model predicts a
or large scales in the wusual Fourier decomposition ! o . . .

uniform distribution of the variablg, the experimental dis-

(k|<1/2R), v-. comes from the large wave numbers tribution of v shows a peak near— 0
(|k|=2/R) or small scales, and.. originates from the scales X P A=
of the flow comparable to the global scale (2/R
<|k|<1/2R). The large scale contribution is uniform over ll. KINEMATIC SIMULATIONS

the triangular configuration of particles, and is therefore as- In contrast to the stochastic model described above, KS

sumed in Ref[21] not fo distort the set of particles. The. defines explicitly the velocity field that advects the particles.

part of the velocity field acts coherently over the scale of th ; . e
triangles with correlation time of the order of the character(—eF()”OWIng Ref. [.27]’ we define the tur_bulent veI90|ty field
v(x,t) by summing over a set of Fourier modés;

istic time of turbulence at scal, defined by

7(R)=R%% 13, (2.8 N

v(X,1)= >, [Ayxk,cogK, X+ w,t)
The small scale component. is often assumed to be com- n=1
pletely incoherent on the scak of the three points and its +B, xk,sin(k,-x+ ont)], (3.1
correlation time is short compared to the characteristic time

of turbulence at scale(R). It is modeled in Ref[21] by a
white noise term.

The action ofv. is approximated by &coarse-grained
strain matrix,M = d,vy,, acting on the vectorp, . The rap-
idly fluctuating incoherent componept. is modeled by a
Gaussian, white in time, random process. This leads to th
following stochastic moddl21]:

whereN, is the number of modes in the simulatiokg,are

the wave vectorsA,, and B, are the amplitude vectors and
wy, is the frequency. The norms of the wave vector are cho-
sen of the formk,=|k,|=kyb" with a parameteb typically
ghosen to bd=(L/7)Y™N1), The large(integra) scaleL

and the small(Kolmogoroy scale » of the flow verify L
=1k, and p= 1/kNk (L/7=bMNk). The direction of the wave

do? a vector, k,=k./|k,|, is uniformly distributed along the unit
dt P Map+ui', (2.9 circle. Similarly, the directions of the vectofs, andB,, are
randomly distributed, and their amplitudes are chosen so that
dMjp Map the energy spectrum is of the for(k) ~k™P. The frequen-
T W*’ 7ab> (210 gies w, are taken to bev,=\\k;E(k,), where\ is a di-

mensionless parameterpriori of O(1). Thedefinition, Eq.
where the indices,j = 1,2 for three particles are labels of the (3.1), makes the velocity field explicitly incompressible.
relative vectors, see E@2.2), anda,b labels of the spatial Note that nos correlation in time is used in KS at any level
components. The velocity fieldsand ther,, term are ran- and that the parametex controls the unsteadiness of the
dom Gaussian terms, correlated in time with variances flow.
To investigate the geometry of clustersrof 3 Lagrang-
(Map(t) mca(t))=C58(t—t")(SacBpa— 5 Sapdea) 7(R), ian particles, we simply advect numerically Lagrangian par-
(21D ticles in the velocity field(x,t) defined by Eq(3.1). This is
c done by solving a set of ordinary differential equations for

2 "
(u?(t)u})(t’»:(?”) 5(t—t’)5i16abR2/T(R). the position vector(xg,t):
(2.12

The stochastic model has been constructed in such a way that
the matrixM is tracelesqgincompressibility and correlated
with a time scaler(R). Its amplitude is of the order dM|  with the initial conditionX(x,,0)=x,. We start with an iso-
~R™ %3, The dimensionless parame®@; (respectivelyC,)  tropic object, i.e., with an equilateral triangle, of a given size,
controls the importance of the incoherent jitteespectively  and follow its evolution over time. The quantities character-
of the coherent terjnin the model. izing the deformation of the object, such bs w, y, are
Physically, the termpM,, in Eq. (2.10 stretches and monitored as a function of time. We then perform ensemble
aligns the set of points. This distorting action is opposed byaverages over many triangles in different realizations of the
the action of theu term, which tends to make the shape velocity field to obtain the relevant particle statistics. We also
distribution Gaussian. The shape distribution resulting fronchecked that our results are not sensitive to the choice of

d
aX(xo,t)=v(x=X,t) (3.2
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distribution and/or number of modé§, used in the simula-
tion, in general agreement with the corresponding tests in
Ref.[25].

We first validate the predictions from KS with the experi-
mental result§22]. To this end, we choose the power of the
spectrump=5/3, the ratio of inner to outer scales as sug-
gested by the experiment, and we take O(1). We then
extrapolate our results to higher values of the ratio of inner to
outer scaled /7, to study dispersion in a high Reynolds
number flow.

<R2(1)>"2m

We stress that KS is a model of the Eulerian velocity field, 0.4 , . . .
used to advect the particles. The KS velocity fi€ddl) has 0.001 0.01 0.1 1 10
an interesting spatiotemporal flow structure, which varies tt,

with the parameters of the flowand\ [26,27]. Investigat-
ing systematically how the changes in the parameteaad
\ affects advection of particles is intrinsically interesting in

FIG. 1. Time evolution of R?) for different values of .

the context of this study. above the upper boundR?=5.5 cm of the inertial range.
Specifically, it was found thagw),s=0.5, (I5)asm~0.11,
IV. VALIDATION OF KS and(x)asn~0.26. These asymptotic values forl,, andy

t i istributi f hich
Before making any predictions with KS regarding multi- correspond to a Gaussian distribution mf and p,, whic

. - . X . implies a uniform distribution forw, I,, and y with the

particle statistics we first validate the model by companng~ . «cian  values Whea=12,  (I5)eau=(1— m/4)/2
with the experimental results Reff22]. We are interested S 5107 q M ;Blazu—o 962 ZdGa“ di
here in reproducingjualitatively the experimental results of ="~ an <X>un—ﬂ e and a ‘;O”G’ZSEO” ng
[22]. This does not mean that KS is not able to reproducé>aussian distribution forR: Pga (R)=(8R"/(R%)%)exp
guantitative predictions, at the cost of fitting the parametet(_2R2/<R2>)- N o )
. We are merely interested in the trends of the shape evo- 1he probability distribution functiodPDF) of R andw,
lution, that is, in the behaviors of the distributionswef y, ~ S€€ Fig. 6 of Ref[22], can be well approximated by the
etc., as a function of time. Gaussian distribution for large values of time 80 s andt

An experimental investigation of the problem of disper- =100 s, corresponding to the values of the radius of gyra-
sion of triangles by a turbulent flow was carried out in two tion larger than the integral scale At later times, the finite
dimensions, in the inverse cascade regif@g]. The flow Size of the experimental system induces a saturation of the
was confined in a small container, X35 Cn’?_ Permanent triangle size, so the tails of the distribution Bfcould no
magnets were placed under the bottom of the cell. The flodonger be correctly fitted by, (R) [22]. A very slow re-
was stirred by running a current through a salted solutionlaxation of the value ofx) towards its asymptotic, Gaussian
The energy was injected at the schle 1.5 cm. The velocity value was observed. The fact that=0 is more probable
field was recorded by using standard Particle Image Velocithan x=#/6 implies that triangles with one edge much
metry techniques and was then stored on & 64 grid every ~ shorter than the two other ones has a large probability. This
0.04 s. The resulting spatial resolution was good enough téffect should ultimately disappear at later time, in the diffu-
describe all the relevant scales of the flow. A Kolmogorovsive regime.
k~ 53 regime was observed over the limited range of scales The numerical experiment, consists of generating KS
1.5 cm=1<5.5 cm. The time resolution was also amply suf- flows in two dimensions, with an energy spectruigk)
ficient to follow numerically the evolution of particles. The ~k ™% similar to that observed experimentally, character-
evolution of a large number(2x 10%) of triangles was then ized by a ratioL/7=3.67, and with an unsteadiness factor
followed numerically. In this section we compare our resultsh =0.5. The smallest and the largest time scales of the flow
produced from KS with the experimental results of Rg2]  are defined to bdz,7=27-r/\/k3,,E(k,7) andtg=L/u’, respec-
and validate our model in the process. tively, whereu’ is the rms velocity of the flow field. In this

It was observedsee Figs. 3—5 of Ref22]) that the typi-  flow, we follow the evolution of three points, initialized as
cal size measured by the radius of gyrat®pf the triangles  the vertices of an equilateral triangle of sizg The results
increased until it reached the largest scale 9 cm of the exwere averaged over 10* configurations.
perimental setup where it started to fluctuate around this The results obtained from KS show the same tendencies
value. The evolution in time of the mean valueswondy  as that observed in the experiment, as we now demonstrate.
(see Figs. 4 and 5 of Reff22]) showed a rapid decrease of All the figures in this paper have been plotted against dimen-
these parameters corresponding to strong shape distortions sibnless quantities.
the triangles. The smaller the initial separatign the lower The behaviors as functions of time of the mean values of
the minimal value of this parameter was observed. The shap@R) (see Fig. 1, (w) (see Fig. 2 and(x) (see Fig. 3 as
distortion was maximum wheR reached the lower value well as the evolution of the PDFs & w and y (see Fig. 4
JR?=1.5 c¢m of the inertial range. The mean values of theseomputed from KS are very close to those observed experi-
variables tend to an asymptotic value whBnincreases mentally(see Figs. 3—6 of Ref22]). Contrary to the labo-
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1 v y y y y v v achieved by increasing the ratio of the largest to the smallest
09k ] scale,L/#n irrespective of initial conditions.
\ A previous study{24] has shown that the separation be-
08 [ 1 tween two particles in the inertial regime shows sizable dif-
A 07 ‘\ ] ferences compared to the famous Richardson’s scaling, ac-
§ cording to which the separation grows according(R¥)
v 06 « et® irrespective of initial conditions. Specifically a strong
05 dependence of two-particle dispersion statistics on the initial
L separation the particles was fouf@#]. In the case of three
04 particles studied here, it is of obvious interest to investigate
03 , ) ) ) . , , the statistics of the radius of gyration of the set of particles.
0 5 10 15 20 25 30 35 40 Also, the existence of a nontrivial, time-independent distri-
t, bution of shapes, predicted by RE21], when the separation
. ) . between particles is in the inertial range of scales, remains to
FIG. 2. Time evolution ofw) for different values of . be tested. We address these questions, in turn, with the help

f KS.

We stress that there is no guarantee that the evolution of
three particles is correctly predicted by the KS wjith 5/3
when the ratioL/» becomes large. In spite of this uncer-

N thi : he rol . £ th K of brobability f tainty, the numerical results presented here are intrinsically
mj IS r?g|me..T ﬁ re axart:on 0 the peak of pro ah'l ity 0Tlinteresting since the KS flow shares with real turbulence a
x~0 is faster in the KS than in the experiment. This small,, ;mper of important properties.

discrepancy is conceivably due to the large scale limitations e evolution of three particles has been followed nu-
of the flow. ) N1 N merically, using several KS flows, corresponding to different

Atintermediate time scales, wh¢R®) ““is in the inertial - peynolds numbers, or equivalently, to different values of
range, the mean values and the distributiorwofire very L/ (L/7=1691,3381,16909). Our runs, with the values of

close to those observed in Rg22]. e parameters characterizing the flows, are listed in Table I.
These results demonstrate that KS reproduces very wel\ia note in passing that the Reynolds number Re and the

the main properties of the evolution of three Lagrangian parTaonr-based Reynolds number Rare related td_/7 by
ticles. A similar conclusion was reached in Re¥4] by com- Re~(L/7)*3 and Re~ (L/7)23

paring laboratory and KS results in two dimensions, and in -ty regyits of these simulationig. 5, corresponding to
Ref.[25] by comparing DNS and KS results in three dlmen-L/n: 1691 and Fig. 6, corresponding td 7= 16909) show

sions. KS is thus a potentially very useful tool both for fun- some resemblance with the smally case(see Sec. 1Y, As
da_lmental studies, and for dispersion studies in a more afhe Reynolds number is increased, the dependence of the
plied context. variables describing geometrl,,), (W), and({x) becomes
weaker, both as a function of the initial size of the triangle
and as a function of time. The values of these variables is
always significantly different from the Gaussian values.

The results of the preceding subsection demonstrate that The PDFs ofR w, and x at the valuel./7=1691 also
the KS model reproduces quite satisfactorily the laboratorygnOW trends that are similar to those observed at smaller
results concerning the evolution of three particles in a turbuYalues ofL/# (Fig. 7). We have not followed particles long
lent two-dimensional flow. We now investigate the large€nough to see the Gaussian distribution of shapes at very

Reynolds number limit with the help of the KS. This is large values ofL/7; the study has been restricted to the
nontrivial inertial range. In this range of scales, the variation

028 ——F—————— of the PDF as a function of time is considerably weaker than

ratory experiment, where the spatial confinement of the setug
induced a saturation of the growth of the radius of gyration
(R?) grows liket at very long times. The distribution of
sizes,R, as well as the distribution off and y are Gaussian

V. PREDICTIONS OF KS IN THE LARGE REYNOLDS
NUMBER LIMIT

0.27 I observed in Sec. 1V, and in this sense, the results suggest that

026 k7 Nt one may be getting close to the self-similar shape distribu-

025t/ : tion predicted in Ref[21]. A visible deformation of the PDF

0.24 |} of R can be observed as a function of time, reflecting the fact
& 023 | that at the later times large excursions in the radius of gyra-
¥ 0'22 I tion are getting close to the value of the largest available

0'21 I scaleL.

j Although still finite, the value otl./% for run 13 is sig-

0.2 1 nificantly larger than it is in any engineering, industrial, or
019 ¢ laboratory flow. Even so, our numerical results show persis-
018 e 10 15 20 25 30 a5 40 tent differences with the picture of a simple truly self similar

", regime. . . _
In all the reported DNS, in tw29] and in three dimen-
FIG. 3. Time evolution of x) for different values of . sions[30], a dependence of the behavior {@(t)) on the
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FIG. 4. Time evolution of the PDFs @& ¢ (o=+(R?), w, and x(rad) for ro/5=1/6 in 2D KS, withL/ »=3.67, tg/t,=2.3, and
A=0.5. From top to bottom the figures are shown at timeth,a, t=6xt,, t=10xt,, andt=14Xt,, respectively. The light lines
correspond to the Gaussian predictidh@®) =8(R/ o) 3exd —2(Rlo)?], P(w)=1, andP(x)= 6/ [22].

7

initial separatiorry has been reported. We observe a similarthe PDFs ofR/(R) for three different initial values ofy/ 7
behavior in our KS calculation. Figure 8 shows that the =0.1,1.0,5.0, and at different values of time. The distribu-
Richardson regime is never really reached. Instead, a coriion of the large values dR/(R) are expected to be indepen-
tinuous dependence of the variation(&?)/t® on the initial ~ dent of time and Fig. 9 does not disprove this expectation.
separatiorr is observed. This effect is clearly seen, even atHowever, the distribution at small values Rf(R) seems to
our largest Reynolds number. This behavior suggests that thery throughout the entire evolution.
set of three particles always remembers its initial condition, To compare different values of,, we have plotted the
which represents a departure with respect to the RichardsdPDFs ofR/(R) corresponding to two different values o,
prediction. Also, at a fixed value of the initial size of the but with similar values of R) (Figs. 10 and 11 For large
triangle, a nontrivial power seems to emerge as the Reynoldsnough times the PDFs &/(R) seem to collapse at large
number increases. A similar behavior was observed for thealues of R/{R) within statistical errors. However, serious
separation between two particlg4]. deviations are observed at small valueR6fR). In particu-

To investigate further this effect, we consider the PDFs ofar, the peaks of the PDF at very small valuesR¥{R) are
the radius of gyrationR. Figure 9 shows a superposition of much sharper at smaller values than at larger valuasg.of
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TABLE |. Different simulation parameters of our runs with kinematic simulation.

No. of L/n No. of rolm A No. of E(k)~k™P

Runs Triangles Modehl, p
1 3.67 <10t 1/6,2/3,8/3,4 0.5 79 1.67
2 10 1x10* 0.05,0.5,5 0.5 79 1.67
3 1691 x10* 0.5,5,20,64 0.5 79 1.67
4 1691 1x10* 0.5 1.5 79 1.67
5 1691 1% 10* 0.5 5.0 79 1.67
6 1691 1x10* 0.5 10.0 79 1.67
7 1691 <10 0.5 0.5 79 1.20
8 1691 <10 0.5 0.5 79 1.33
9 1691 <10t 0.5 0.5 79 1.40
10 1691 >10 0.5 0.5 79 1.80
11 3380 5¢< 10° 5,20,64 0.5 200 1.67
12 11180 x10* 5,64 0.5 500 1.67
13 16909 x10* 5,20,64 0.5 500 1.67

These results suggest that the distributionfRefre influ-  grows to a valu&R>r, it was observed in Ref22] that two
enced throughout the entire evolution by the initial valye  particles of the triplet can remain close to each other, with a
insofar as a significant number of triplets do not really sepatarge probability. We interpret the lack of a stationary distri-
rate, and remain at a valuR~r,. In the case of two par- bution of shapes to reflect a similar cause: when one particle
ticles this behavior has indeed been observed by Juli@h.  of the triplet separates from the two other ones, which re-
[18] in the laboratory for low Reynolds number flows and by main at a mutual distancer,, a very elongated shape is
Funget al. [27] and Nicolleauet al. [24] in high Reynolds  created. The relaxation of the distribution of shapes towards
number KS simulations. In this way, the evolution depends; stationary distribution will depend on how the two particles
in an essential way on the value gf. o that are close together eventually separate. Our observations

The evolution of other geometric quantities, SUCH&s, g gqest that, the smaller thg, the longer the particles will
(X0 rgflects to some extent the behavior de_scr_|be_d aboVgtay together, and hence, the longer it will take the transient
(see Figs. 5, 6 Indeed, the lack of exact self-similarity ob- to relax. This lack of self-similarity is absent in stochastic

served in thg eyolut|on of the_ rad]us of gyratid, ShOWS. .models, such as those proposed by R&8], and is consis-
that the prediction of a truly time independent shape distri- . ; :
tent with the view that coherent streamline structures are

bution is at best valid at Reynolds numbers impossible to~ " . tent ht q d ¢ turbulent diff
attain. Although this prediction might constitute a good first-PErSISIENt €noUgn o cause a dependence ot turbulent diftu-

order approximation, which becomes better as the Reynold&©n On initial conditions.

number increases, Fig. 6 shows that the mean valueg of

I,, and y do vary with time, even at./»=16909. In addi-

tion, a systematic variation with, is seen in Figs. 5 and 6. VI. EFFECTS OF PERSISTENCE
The distributions are observed to remain non-Gaussian as OF THE FLOW STRUCTURE
long as(R) remains in the inertial range, and do correspond

to a higher probability of observing elongated objects, aﬁ - . .
s . . : eristics of the advecting flow, both spatially and temporally.
anticipated in the stochastic model proposed in Héf,21]. This i achieved by modifying the parametarsnd p. The

In the light of the KS results, the stochastic model correctly X o . i )
predicts the main qualitative featuféne increased probabil- purpose_of this section is to investigate the effe_ct of changing
ity of elongated objecis but it does not incorporate the lack the spatiotemporal structure of the flow, and in this way, to
of self-similarity of multiparticle diffusion observed in KS. 9@in insight into the mechanisms involved in multiparticle
As we discuss in the following paragraph, memory effectsdispersion.
relating to this lack of self-similarity are observed in labora- We first change the temporal structure of the flow by
tory experiment$18,22. They are also observed in KS be- varying the persistence paramete(see Fig. 12 This con-
cause, unlike stochastic models, KS incorporates the persigols how fast the streamlines of the flow are jittered in com-
tence of flow structures. Whether this lack of self-similarity parison to the relevant eddy turn over time at the correspond-
persists in the laboratory and in nature at extremely highing scale. This jittering makes the particles in the flow to be
Reynolds numbers remains an open question. rapidly swept from one streamline to the other. Since in KS
The results obtained so far suggest that the lack of selfthere is no interaction among modes of the velocity field, this
similarity in the evolution of the radius of gyratioR, is due jittering mimics the sweeping effects that are present in a real
to the fact that particles stay together, at a distance of orddtow field. The minima of(l,(t)) and(w(t)) increase with
ro with a high probability. Even if the radius of gyration increasing unsteadiness paramateavithin the inertial range

The KS model allows us to modify some of the charac-
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From top to bottom the figures are shown at tihe20Xxt, , t=60Xt,, andt=100xt,, respectively.
of time scales, which means triangles are less elongated for However, the simple calculation, presented in the Appen-
larger values oh (Fig. 12. This happens because the pathsdix, indicates that the average straining rate per straining
of the neighboring particles decorrelate faster for larger valregion increases faster than the number of such regions de-
ues of A and triangles quickly forget their memory of the creases wheip is made larger. Provided that the effect of
initial state. Hence increased valuesofshould cause the increased strain rate per strain region overwhelms that of the
triangle shape parameters to relax faster to their correspondecreased number of such regions, then the same conclusion
ing Gaussian values. is reached: clusters should remain m@es9 elongated dur-
Second, we change the spatial structure of the flow fieldng the inertial range of times whep is made larger
by changing the energy spectrum, i.e., changing the exponefgmallep.
pin E(k)~k P (see Fig. 18 This has the effect of changing
the density of straining regions in the flow fie|@7,28,
thereby modifying the separation mechanism of particle pairs
and clusters. The minimum df ,(t)) and{w(t)) decreases We have investigated the Lagrangian shape dynamics and
with increasingp (E(k)~k™P) within the inertial range of the corresponding statistics of multiple particles, namely, of
time and scales. This means that the clusters are (le8@ three particles advected by a two-dimensional turbulent flow.
elongated during the inertial range of times wheis made  We have used KS to generate a turbulent velocity field and
larger(smalle). An explanation of this effect can be given in follow numerically sets of three particles in this flow field.
terms of randomness: gsincreases, there is less energy in The results of the simulation have been compared with the
the smaller scales of the turbulence, which may mean les®sults of a two-dimensional experimé@g]. We have iden-
randomness leading to clusters remaining more elongatetfied a mechanism for the shape evolution of three particles
during the inertial range of times. In the context of KSpas depending on the underlying flow structure and the effect of
increases, there is indeed less energy in the small scales legskrsistence of these structures on the statistics of these
ing to smaller unsteadiness frequenay,~k{> P2 and shapes.
therefore less randomness and more elongated clusters. How- Two regimes with well-characterized distributions have
ever, a more searching explanation should invoke the spatidseen identified in our simulation with KS, as observed in the
temporal flow mechanism causing cluster elongation. Onexperiment of Castiglionet al. [22].
such mechanism already proposed in the literaft@8s27] is The first regime is characterized by the fact that the mean
based on persistent effects of straining regions. The spati@eparation between particles is large compared to the largest
density of straining regions decreasespas made larger scale of the flow(diffusion regime; the shape distribution is
[27,28. Gaussian.

VII. CONCLUSIONS
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FIG. 8. Time evolution of(R(t)*)/(t/t,)° obtained by kine-

matic simulation of a triangular configuration of three particles ina  FIG. 9. Time evolution of the PDF oR with different ry’s
two-dimensional high Reynolds numbet/¢;=1691,3381, and obtained by KS in two dimensions wit(k) ~k~ >3, L/#=3381.
16909 turbulent flow for different initial separatiorny’s. Here the ~ From left to rightr,/%=0.10,1.0 and 5.0.

energy spectruniE(k)~k~>3 A=0.5, and the number of realiza-

tions is 5<10°. (largep (Fig. 12. The reason for this result must be that the
persistence of the straining action of the flow is diminished

The main result of this work concerns the other regimewhen the flow is made more unsteady by increasing
where the mean separation between particles is in the inertial It is also found that the clusters are mdless elongated
range:n?<(R?<L2. We have found that in this regime, the during the inertial range of times whem is made larger
shape distribution is nontrivial, as predicted phenomenologitsmalle). An explanation of this effect can be given in terms
cally in Ref. [21]. The temporal evolution of(I,(t)), of randomness: ap increases, there is less energy in the
(W(t)), and(x(t)) match with the experimental results of smaller scales of the turbulence, which may mean less ran-
Ref. [22]. KS also reproduces the correct distribution of domness leading to clusters remaining more elongated dur-
these quantities. The stochastic model can do as well, exceptg the inertial range of times. However, we also discuss a
for the PDF ofy. In the inertial range of scales, the evidencemore searching explanation that invokes the straining mecha-
for Richardson’s law{R(t))=t3, remains elusive. nisms causing cluster elongation.

It is found that the clusters are mofless elongated dur- The dependence of the shape of clusters on the initial
ing the inertial range of times wheR is made smaller separation between marked fluid elements is clearly demon-
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the inertial ranggsee Figs. 10 and 110ur KS numerical
0.001 S i experiments indicate that clusters tend to have memory of
o 4 the initial state even when the turbulence has an extremely
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R/<R wide inertial range of more than four decades.
<> This result is in agreement with the observed dependence
10 T [24] on the initial pair separation of the apparent power-law
! : 2?8222138135 e governing the growth of interparticle distances. If these ef-
11 r°=o1 <R>=128.72 - fects are transient and due to a finite range of inertial scales,
. then our results indicate that they might only disappear at
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& transient effects, and are caused, instead, by the persistence
0.01 of spatial flow structures at all scales, assuming this persis-
tence remains at asymptotically high Reynolds numbers.
0.001 | It is not clear how the results of this work apply to the

0

4 6 8 10 12 14
R/<R>

FIG. 10. PDF of radius of gyratiorR}, or global size with dif-
ferent values of ;. Here bothr, and(R) have been normalized by the inertial range is very large.

problem of dispersion by a real velocity field. This study,
however, demonstrates that the scale hierarchy of the flow
leads to nontrivial shape statistics. A non-Gaussian shape dis-
tribution is thus very likely to be found in real flows when

7. Two runs with different initial sizes are compared. The PDFs are

shown at several times, fop=

0.1 andry=1.0. For comparison,
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APPENDIX Wheren.S is the numbe_r dens_ity of straining .stag_na'gion.points
andDyg is the fractal dimension of the spatial distribution of
Assume that we are given the spectrufi(k) these points in the flow. In 2D K®s=3—p [28]. Hence,
—E,L(kL) P defined in the range tL<k<1/7 of an isotro- the numbe_r of straining stagnation points per unit area de-
pic turbulence. The mean square straining tgtei/dx)2) is ~ Creases with increasing in our KS, but the mean square
proportional tof}f[’sz(k)dk. Substituting the form of the strain rate per straining stagnation point, i€qu/dx)<)/ns,

spectrum and intearating we qet for 3 scales likeEy/(3—p)L2. This implies that, although the
P 9 9 getIprss, number density decreases with increasmdout the mean

2 3 strain rate per straining stagnation point becomes stronger,
5 ) -agtsl

(A2)

(A1)  Wwhich is the reason behind the decrease of the parameters

x| (3-p)L2\ 7 (I,) and(W) with increasingp.

[1] B.I. Shraiman and E.D. Siggia, Natufeéondon 405 639 [5] G.K. Batchelor, Proc. Cambridge Philos. Sd8, 345(1952.

(2000. [6] L.F. Richardson, Proc. R. Soc. London, Sefll®), 709(1926.
[2] P.K. Yeung, Annu. Rev. Fluid Mecl&4, 115 (2002. [7] C. Gibson, C. Freihe, and S. McConnell, Phys. FldfisS156
[3] B. Sawford, Annu. Rev. Fluid Mecl83, 289 (2001). (2977.
[4] S.B. Pope, Annu. Rev. Fluid MecBS6, 23 (1994. [8] P.G. Mestayer, J. Fluid Mech25 475(1982.

026313-12



KINEMATIC SIMULATION OF TURBULENT ... PHYSICAL REVIEW E 68, 026313 (2003

[9] K.R. Sreenivasan, Proc. R. Soc. London, Ser424, 165 2394(1999.

(199)). [20] A. Celani and M. Vergassola, Phys. Rev. L&, 424(2001).
[10] L. Mydlarski and Z. Warhaft, J. Fluid Mect858 135 (1998. [21] A. Pumir, B.l. Shraiman, and M. Chertkov, Phys. Rev. L.
[11] B.I. Shraiman and E.D. Siggia, Phys. RevbE 2965(1998. 5324(2000.

[12] A. Pumir, Phys. Rev. 57, 2914(1998. [22] P. Castiglione and A. Pumir, Phys. Rev6E, 056303(2001).
[13] L. Mydlarski, A. Pumir, B.l. Shraiman, E.D. Siggia, and Z. [23] J.C.H. Fung, J.C.R. Hunt, N.A. Malik, and R.J. Perkins, J.

Warhaft, Phys. Rev. LetB1, 4373(1998. Fluid Mech.236, 281(1992.

[14] G. Falkovich, K. Gawedzki, and M. Vergassola, Rev. Mod. [24] F. Nicolleau and J.C. Vassilicos, Phys. Rev. Léfl, 024503

Phys.73, 913(2001)). (2003.

[15] A. La Porta, G.A. Voth, A.M. Crawford, J. Alexander, and E. [25] N.A. Malik and J.C. Vassilicos, Phys. Fluid4, 1572(1999.

Bodenschatz, Naturd.ondon 409 1017(2001). [26] B. Shraiman and E. Siggia, C. R. Acad. Sci., Ser. IIb: Mec.,
[16] S. Ott and J. Mann, J. Fluid Mech22, 207 (2000. Phys., Chim., Astron321, 279(1995.

[17] N. Mordantet al, Phys. Rev. Lett87, 214501(2001). [27] J.C.H. Fung and J.C. Vassilicos, Phys. Re&7=1677(1998.
[18] M.C. Jullien, J. Paret, and P. Tabeling, Phys. Rev. L&2. [28] J. Davila and J.C. Vassilicos, e-print physics/0207108.
2872(1999. [29] G. Boffetta and A. Celani, Physica 280, 1 (2000.

[19] M. Chertkov, A. Pumir, and B.l. Shraiman, Phys. Fluitl [30] P.K. Yeung, Phys. Fluids, 3416(1994).

026313-13



